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SUMMARY

Dendritic solidi�cation with forced convection and free convection driven by contraction and thermo-
solutal buoyancy is simulated in two-dimensional space using a sharp-interface model. Both pure sub-
stances and alloys are considered. The model is formulated using the �nite element method and works
directly with primitive variables. The coupled energy- and solutal concentration-equations, along with
the Navier–Stokes equations for incompressible �ow, are solved using di�erent meshes. Temperature is
solved in a �xed mesh that covers the whole domain (solid + liquid) where the solid–liquid interface
is explicitly tracked using marker points. The concentration and momentum equations are solved in the
liquid region using an adaptive mesh of triangular elements that conforms to the interface. The velocity
boundary conditions are applied directly on the interface. The model is validated using a series of
problems that have analytical, experimental and numerical results. Four simulations are presented: (1)
crystal growth of succinonitrile with thermal convection under two small undercoolings; (2) dendritic
growth into an undercooled pure melt with a uniform forced �ow; (3) equiaxial dendritic growth of
a pure substance and an alloy with contraction-induced convection; and (4) directional solidi�cation
of Pb–0:2 wt% Sb alloy with convection driven by the combined action of contraction, thermal and
solutal buoyancy. Some of the simulation results are compared to those reported using other methods
including the phase-�eld method; others are new. In each case, the e�ects of convection on dendritic
solidi�cation are analysed. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

It is well known that convection due to melt �ow in solidi�cation is unavoidable, and the
e�ects of convection on the micro/macro-structures and various properties of the solidi�ed
metals and alloys can be signi�cant [1–3]. Melt �ow in solidi�cation can be categorized into
natural (or free) and forced convection. Included as natural convection is convection caused
by contraction (or expansion) when the densities of the solid and liquid are di�erent regardless
of the presence of the gravitational force. Forced convection is induced by electromagnetic
stirring, rotation, pouring of the melt, etc., some of which may be intentionally introduced
to cause convection to enhance solute transport from the solid–liquid interface in order to
reduce macro- and micro-segregations [1]. Natural convection is believed to be responsible
for the discrepancies between experimental data under terrestrial conditions and the prediction
of di�usion-based theories that ignore convection [3–6].
Numerical modelling of dendritic solidi�cation without convection at the microstructural

level has been extensively studied, and simulations have been performed in the last two
decades using techniques such as the phase-�eld method, the level-set method and various
explicit-interface-tracking methods. The extension of these methods to include convection in
the melt, however, is much more recent starting only a few years ago. Most simulations of
dendritic solidi�cation with convection performed so far are for pure substances with forced
�ow. T�onhardt and Amberg [7, 8] used a phase-�eld method to simulate two-dimensional
dendritic growth into an undercooled liquid subject to an externally forced �ow. Their results
show that the evolution of the dendrite shape was altered by the �ow, and the growth of
the side branches was promoted on the upstream side and inhibited on the downstream side
as expected. Similarly, Beckermann et al. [9] and Tong et al. [10] studied the e�ects of a
uniform-incoming �ow on the operating point of the dendrite tip and the dynamics of dendritic
side branching using a phase-�eld method. Al-Rawahi and Tryggvason [11] and Udaykumar
et al. [12] presented simulations of dendritic solidi�cation with forced �ow using explicit
front-tracking methods. Three dimensional simulations were reported by Jeong et al. [13, 14],
Boettinger et al. [15] and Al-Rawahi and Tryggvason [16]. In all these simulations equiaxial
growth was considered, in which the dendrite grows into an undercooled pure melt. Recently,
Lan and Shih [17] presented simulation of dendritic growth into a supercooled binary melt
subject to a forced �ow using a phase-�eld method with an isothermal assumption. An ‘an-
tisolutal’ trapping scheme was used to help relax the limitation on the interface thickness.
Their simulations showed similar e�ects of an externally forced �ow on a binary dendrite as
on a thermal dendrite when both grow into an undercooled melt.
Simulations of dendritic growth with natural convection are few. B�ansch and Schmidt [18]

presented a �nite element model based on a sharp interface to simulate the e�ect of ther-
mal convection on dendritic crystal growth in two space dimensions with either Dirichlet or
absorbing boundary conditions for the �ow problem, and Dirichlet or Neumann boundary con-
ditions for the temperature. They obtained results for equiaxial solidi�cation that showed strong
in�uence of convection on dendritic morphology, side branching and growth rate. T�onhardt
and Amberg [6] used the properties of succinonitrile to study the e�ects of thermal natural
convection on crystal growth with a phase-�eld method coupled with Navier–Stokes equa-
tions. By comparing the results with and without convection for �ve di�erent undercoolings
ranging from 1.92 to 0:12K, it was shown that the in�uence of thermal convection increases
as the undercooling decreases, which con�rms the experimental observations and theoretical
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analyses that, at low undercoolings the e�ect of thermal convection becomes important [19].
For the larger undercoolings the in�uence of thermal convection is small or negligible.
Coriell et al. [20] considered the e�ect of �ow due to a density change in eutectic growth

of Sn–Pb and Fe–C alloys by extending the model of Jackson and Hunt [21] to allow for
di�erent densities of the melt and the phases within the solidi�ed eutectic. They solved the
decoupled steady-state momentum equations (analytically) and the solutal concentration equa-
tion (numerically), assuming a planar interface and Stokesian �ow, to examine the e�ect of
�uid �ow on the relation between the interface undercooling, the structure spacing and the
solidi�cation rate. Conti [22] used a modi�ed version of the phase-�eld method to simulate
the growth of a free dendrite into a supercooled pure liquid subject to �ow arising from the
di�erence in the densities of the solid and liquid.
Even though dendritic solidi�cation has been numerically studied for over two decades,

a full numerical simulation for nondilute metallic alloys with properties found in real cast-
ings still remains challenging even in the absence of convection. The di�culties lie in the
widely di�erent length and time scales in the coupled energy and mass transport processes,
the segregation of the solute upon solidi�cation and the strong dependence of the melting
temperature on the liquidus concentration [23, 24]. When convection is included, the problem
is further complicated by the coupling of Navier–Stokes equations in the presence of evolving
solid–liquid interfaces that need to be tracked as part of the solution.
Numerical simulation of �ow with complex moving boundaries/interfaces¶ constitutes a

big challenge in CFD, even though it has been extensively studied for decades because of
its importance in areas such as multiphase processes, �ow–structure interactions, �ow control,
and bio-�uid mechanics. The challenge lies in the di�culty to accurately impose the bound-
ary conditions at the exact location of the moving interface, which in general represents a
discontinuity in both material properties and physical quantities.
Numerical methods to solve �uid �ow equations with moving boundaries can be broadly

divided into two categories based on the type of mesh used: the �xed Cartesian-grid methods
and the adaptive mesh methods. Some of the methods that have only been applied to station-
ary boundaries but are claimed to be applicable to moving boundaries are also included in
the following discussion. The �rst category can be further divided into the di�use-interface
methods, where the moving boundary is treated as an interface with a �nite thickness of
usually a few grid spacings, and the boundary conditions are approximated and spread over
across the interface thickness, and the sharp interface methods, where the boundary conditions
are applied somewhat directly at the interface. The di�use-interface methods include the pop-
ular immersed boundary methods in CFD, where the e�ect of the immersed boundary on the
�uid is approximated by a distribution of added singular sources (forces or vorticity) to the
nearby grid points [9, 10, 25–28], and others that make use of a phase-�eld variable or similar
function rather than adding a forcing term to the momentum equations [11].|| The �xed-grid
sharp interface methods include those that treat the interface as sharp both in the tracking and

¶The terms ‘boundary’ and ‘interface’ are used interchangeably throughout this paper unless otherwise indicated.
||References [6–8] would have been included here if the mesh used were �xed. In these references the no-slip
condition at the evolving solidi�cation front is realized by directly relating the �ow �eld to the phase-�eld variable
without adding an extra forcing term to the momentum equations. To get high resolution near the front while
keeping the total number of elements minimal, an adaptive mesh was used.
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in the imposition of the boundary conditions [29, 30]. An excellent discussion and a literature
review on the �xed Cartesian-grid methods can be found in Reference [30].
The adaptive mesh methods include those that involve a changing mesh in the numeri-

cal procedure. The changing mesh may or may not conform to the moving interface. This
category includes: (1) domain transformation (conformal mapping) and algebraic interpolation
methods suitable for simple interface geometries and motion [31–34]; (2) node/mesh-moving
methods that adjust the position of the nodes while preserving the mesh structure [35]; (3)
remeshing methods that completely regenerate the mesh as the interface position changes [23];
and (4) methods that combine the remeshing and node-adjustment strategies [36]. In these
methods, the mesh is always conformal to the interface. Other methods in this category use
an adaptive mesh that is not body-conformal but is locally re�ned and regenerated as needed
[6–8, 13, 14, 37], or they start with a coarse mesh and implement adaptive mesh re�nement
(AMR), which iteratively re�nes the elements in the region of large gradients in the solution
[38, 39].
With �nite-di�erence discretizations a Cartesian-grid method is often used in order to avoid

the di�culties related to adapting the grid to the moving boundary and interpolation between
the grids. In such a method the Navier–Stokes equations are solved on the �xed, usually
uniform, grid that covers the whole domain consisting of both phases. The solid phase is
modelled as a liquid with viscosity much higher than that of the liquid in the system. The
Cartesian-grid methods are popular because of the simplicity of discretization and e�ciency
of the solver. These methods, however, have two drawbacks [40]. (1) It is di�cult to use a
locally re�ned grid in areas of interest, usually the vicinity of the interface, unless a �ne grid
is used for the whole domain, which is computationally prohibitive. Even though it is possible
to use a �xed non-uniform grid, this technique becomes ine�cient when the time-dependent
interface is unknown and a large region of re�ned grid is needed to cover the possible
positions of the interface resulting in large unwanted regions of re�ned grid. (2) It is di�cult
to accurately apply the interface conditions at the exact position on the immersed boundary,
which is not aligned with the grid lines. In the generalized immersed boundary method [26],
the forcing term is iteratively calculated and interpolated to the grid nodes by a feedback
scheme until the �ow velocity is brought back to the boundary velocity. Furthermore, the
accuracy of the method is a�ected by the interpolation of the forcing term, which is de�ned
on the interface, to the nearby grid points [27].
A �nite volume method was used in the Cartesian-grid method presented by Udaykumar

et al. [30], in which the interface conditions are realized by computing the momentum
transport in control volumes formed in the cells traversed by the immersed boundaries. The
method needs to deal with the so-called ‘freshly cleared cells’ problem, which lowers the
accuracy of the method [41].
Adaptive body-conformal-mesh methods solve the momentum equations on a changing mesh

that only covers the liquid region. The adaptive mesh can be easily re�ned near the immersed
boundary or other areas of interest, and the exact boundary conditions at the moving interface
can be applied at the correct position. The tradeo�s are the need to regenerate the mesh
every time step (or every few time steps) and the interpolation required between the old and
new meshes. All the di�culties encountered by a �xed-grid method are now transferred to
�nding an e�cient way to generate a quality mesh conforming to the moving boundary. For
simple geometries, the traditional domain transformation method is suitable as well as methods
that involve moving the nodes or adjusting the elements while preserving the existing mesh
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structure. A more systematic approach to generate body-�tted meshes resorts to the solution
of partial di�erential equations, but this is computationally expensive for moving boundary
problems. For complex geometries, direct numerical mesh generation is used.
In this article, we present a sharp-interface �nite element model to simulate two-dimensional

dendritic solidi�cation of binary alloys with convection. This work is an extension of the
model for dendritic solidi�cation of binary alloys without convection presented in Reference
[23], in which an interface conforming mesh was used to model the solute concentration
equation in the liquid phase only. The same approach is used here based on the following
considerations. (1) In dendritic solidi�cation it is at the interface where the important physical
processes take place. An adaptive mesh can be made very �ne at the interface to accurately
capture the interface dynamics and very coarse elements may be used to away from the
interface where not much happens. (2) The same adaptive mesh constructed to solve the
solute concentration equation can also be used for the solution of Navier–Stokes equations.
The model is a sharp-interface model in that the solid–liquid interface is explicitly tracked,
and the interfacial conditions for the energy, the solute concentration and the momentum
equations are directly applied at the interface. The interface-tracking method is the same as
originally presented in Reference [42]. The energy equation is solved on a �xed mesh of
bilinear/triangular elements over the whole domain consisting of the solid and liquid phases.
The solutal concentration and Navier–Stokes equations are solved on an adaptive mesh of
triangular elements that covers only the liquid phase, using quadratic �nite elements for the
solutal concentration and linear �nite elements for the velocity components. Details about the
choice of meshes and elements and the coupling of di�erent meshes are given in Section 3. The
fractional-step method is used for the solution of Navier–Stokes equations for incompressible
laminar �ow, and the boundary conditions are directly applied at the interface.
There are two aspects of the present method that require special attention. One is the

computational cost associated with the generation of the interface conforming mesh and the
interpolation between two di�erent meshes. An e�cient adaptive mesh generator with a cost
(for both mesh generation and interpolation) proportional to N log N , where N is the total
number of nodes, has been implemented [43–45], and this remeshing is done only in a
subdomain slightly larger than the region within which the interface moves. The subdomain
is a small fraction of the whole computational domain; in the rest of the domain the mesh is
kept �xed. The second issue is the complexity of the moving interface that the mesh generator
can handle. This has been addressed in References [23, 46], where it was shown that the two-
dimensional mesh generator is very robust and can generate high-quality triangular-element
mesh conforming to very complex interfaces.
All types of convection, including that generated by contraction, thermal and solutal buoy-

ancy, and forced convection are included in this model. The material can be a pure substance
or a binary alloy. By using graded variable meshes that are very �ne near the interface and
very coarse in the region far away from the interface, simulations can be performed in a
domain several orders of magnitude larger than the size of the dendrites.
The simulations are validated against theoretical and experimental data and other

published numerical results on three problems: the Rayleigh B�enard thermal convection prob-
lem, �ow past a circular cylinder, and �ow caused by an oscillating cylinder. Simulations
of dendritic solidi�cation including convection are validated using the work of T�onhardt and
Amberg [6] for growth of succinonitrile crystals with natural thermal convection and very
small undercoolings, and the simulation presented in References [9, 11] for dendritic growth
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in the presence of forced convection. The e�ects of convection caused by contraction and
thermosolutal buoyancy on the shape and growth rate of alloy dendrites are also examined.
In Section 2 the mathematical formulation of the problem is introduced, followed by the

numerical implementation in Section 3. Simulation results and discussions are presented in
Section 4. The last section contains some conclusions. Validation of the Navier–Stokes solver
is given in the Appendix.

2. MATHEMATICAL FORMULATION

2.1. Governing equations

Consider a two-dimensional rectangular domain that contains the solid and liquid of a pure
substance or binary alloy, Figure 1. The two phases are separated by a sharp interface which
evolves during solidi�cation. For equiaxial growth, the solid phase (initially a seed) is within
the domain, Figure 1(a). In directional solidi�cation under a temperature gradient, the solid
phase initiates at the cooling side of the domain and evolves toward the other side, Figure
1(b). It is assumed that the liquid is incompressible, and the physical properties of the material
are constant but di�erent in each phase except for the density of liquid in the buoyancy term,
in which the Boussinesq approximation is used. The dimensional forms of the governing
equations for the temperature (T ), the solute concentration (C), and the velocity and pressure
(u; p) are given by

�ScPS
@T
@t
=∇ · (�S∇T ) (1)

�L0cPL

(
@T
@t
+ u · ∇T

)
=∇ · (�L∇T ) (2)

@C
@t
+ u · ∇C =DL∇2C (3)

∇ · u=0 (4)

@u
@t
+ u · ∇u=− 1

�L0
∇p+ �∇2u+

�L − �L0
�L0

g (5)

The energy equations (1) and (2) are written for the solid and liquid, respectively. The
solute concentration and the velocity equations (3)–(5) are written in the liquid only. Solutal
di�usion in the solid is ignored since the mass di�usivity in the solid is several orders of
magnitude smaller than that in the liquid. The properties, �; cP; �; D; � are density, speci�c heat,
thermal conductivity, solutal di�usivity and kinematic viscosity, respectively, and g denotes
the gravity vector. The subscripts S and L denote the solid and liquid phases, respectively.
The density of the liquid in the body-force term of Equation (5) is assumed to be linear in
T and C:

�L =�L0[1− �T (T − T0)− �C(C − C0)] (6)
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Figure 1. Computational domains: (a) equiaxial solidi�cation driven by undercooling; (b) directional
solidi�cation driven by extracting heat from one side (the cooling side). n is the vector normal to the

interface with an orientation denoted by � and g denotes the gravity vector.

where �T ≡ −(1=�L0)@�L=@T and �C ≡ −(1=�L0)@�L=@C are the thermal and solutal expansion
coe�cients, respectively, �L0 is the liquid density at the base state, i.e. when T =T0 and
C=C0, where C0 is the initial bulk solutal concentration and T0 is the liquidus temperature
of the alloy when C=C0. The conditions at the solid–liquid interface are the following:

TS = TL =TI (7)

(�S∇TS − �L∇TL) · n= �S[L− (cPL − cPS)(Tm − TI)]VI (8)

−DL · n∇C = (1− k)(1 + �S)CVI (9)

Conditions for the velocity and pressure are problem dependent and are described later. Here,
TI is the interface temperature, L is the latent heat assumed to be constant, VI ≡ (dxI=dt) · n
is the growth velocity with xI being the interface position vector, n is the unit vector normal
to the interface, k is the equilibrium partition ratio, and �S is the solidi�cation contraction
rate de�ned as �S = (�S − �L0)=�L0. The interface temperature, TI, is given by the generalized
Gibbs–Thompson equation [47]

TI − Tm + �(�)Tm�SL
C+ VI

�(�)
+
Tm(cPL − cPS)

L

[
TI ln

(
TI
Tm

)
+ Tm − TI

]
=0 (10)

Here, �(�) and �(�) are the anisotropic interfacial energy and kinetic mobility, respectively,
and � is the local interface orientation shown in Figure 1; C is the local interface curvature. For
alloys the freezing temperature is related to the solute concentration through the phase diagram
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of the material. For hypoeutectic lead–antimony (Pb–Sb) alloys, Tm can be approximated as

Tm=T0 +m(C − C0) (11)

where m is the slope of the liquidus line. The initial and boundary conditions are problem
dependent and are described for the individual cases in Section 4.

2.2. Nondimensionalization

A wide variety of situations, which have very di�erent length and time scales, are consid-
ered. Hence, we use di�erent sets of reference quantities for the nondimensionalization of the
equations.

2.2.1. Directional solidi�cation of a binary alloy with thermosolutal convection. For this
type of problems, the reference quantities are: length H (to be de�ned in the individual
cases), time H 2=DL, velocity

√
gH�C�C, and pressure �L0(DL=H)2. The temperature and

concentration are made dimensionless by (T − T0)=�T and (C − C0)=�C, respectively. The
nondimensional governing equations are

�p
@T
@t
= Le∇ · (�K∇T ) (12)

@T
@t
+
√
RCScu · ∇T = Le∇ · (∇T ) (13)

@C
@t
+
√
RCScu · ∇C =∇2C (14)

∇ · u=0 (15)

@u
@t
+
√
RCScu · ∇u=− 1√

RCSc
∇p+ Sc∇2u

−
(
RTLe

√
Sc
RC
T +

√
RCScC

)
ng (16)

Here, �T =GLS with G the initial thermal gradient and LS the length of the domain in the
solidi�cation direction, �C=C0(1− k)=k; RT = gH 3�T�T=��L the thermal Rayleigh number,
RC = gH 3�C�C=�DL the solutal Rayleigh number, Le= �L=DL the Lewis number, Sc= �=DL
the Schmidt number, �P=�ScPS=�L0cPL, �K =�S=�L, and ng is the unit vector in the direction
of gravity. The nondimensional interfacial conditions are

TS =TL =TI (17)

TI − Tm + (1 + �mC)	C+ 
VI + �cSt(TI − Tm)2 =0 (18)

Le(�K∇TS − ∇TL) · n=(1 + �S)(1=St + �c(TI − Tm))
√
RCScVI (19)

−∇C · n=(1 + �S)
√
RCSc(k + (1− k)C)VI (20)

where the dimensionless parameters are: �m=mC0=T0; �c=(cPL − cPS)=cPL the di�erential
speci�c heat, St = cPL�T=L the Stefan number, 	=	0f(�) the interfacial energy with
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	0 = �0Tm0=�SLH�T and 
=
0g(�) the kinetic mobility with 
0 =
√
gH�C�C=�0�T , �0 and

�0 being the interface energy and kinetic mobility, respectively, at the reference state (i.e.,
T =T0 and C=C0), and f(�) and g(�) being the anisotropic functions for the interfacial en-
ergy and kinetic mobility, respectively. The derivation of Equation (18) from Equation (10)
is given in Reference [23].

2.2.2. Solidi�cation of a pure substance with thermal convection. For dendritic growth into
an undercooled pure melt with thermal convection, the following reference quantities are
chosen for nondimensionalization: length H , time H 2=�L, velocity

√
gH�T�T , and pressure

�L0(�L=H)2. The temperature is made dimensionless by (T − Tm)=�T , where �T is the un-
dercooling. The dimensionless governing equations are

�p
@T
@t
=∇ · (�K∇T ) (21)

@T
@t
+
√
RTPru · ∇T =∇ · (∇T ) (22)

∇ · u=0 (23)

@u
@t
+
√
RTPru · ∇u=− 1√

RTPr
∇p+ Pr∇2u −

√
RTPrTng (24)

where Pr= �=�L is the Prandtl number. The interfacial conditions are

TS =TL =TI (25)

TI + 	C+ 
V + �cStT 2I = 0 (26)

(�K∇TS − ∇TL) · n=(1 + �S)(1=St + �c(TI − Tm))
√
RTPrVI (27)

2.2.3. Solidi�cation of a pure substance with forced convection. For dendritic growth into
an undercooled pure melt with forced convection only (natural convection due to contraction
or thermal buoyancy is ignored), the following reference quantities are used for nondimen-
sionalization: length H , time H 2=�L, velocity U∞, and pressure �L0U∞�L=H . The temperature
is made dimensionless by (T − Tm)=�T , where �T is the undercooling. The dimensionless
governing equations are

�p
@T
@t
=∇ · (�K∇T ) (28)

@T
@t
+ Pefu · ∇T =∇ · (∇T ) (29)

∇ · u=0 (30)

@u
@t
+ Pefu · ∇u=−∇p+ Pr∇2u (31)
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where Pef =U∞H=�L is the �ow Peclet number. The corresponding interfacial conditions are

TS = TL =TI (32)

TI + 	C+ 
V + �cStT 2I = 0 (33)

(�K∇TS − ∇TL) · n=(1 + �S) (1=St + �c(TI − Tm))PefVI (34)

3. NUMERICAL METHOD AND PROCEDURE

3.1. Interface tracking and mesh generation

The solid–liquid interface is represented using marker points in a sequential order and tracked
in the temperature mesh which is uniform and �xed and covers the whole domain. Details
regarding the tracking scheme and the interaction between the moving interface and �xed-
mesh elements have been presented in References [23, 24, 42] and are not repeated here. The
adaptive mesh, on which the concentration and the momentum equations are solved, covers
the liquid region only and is generated every time step using the current interface location
as part of the domain boundary. The adaptive mesh consists of triangular elements, which
are �nest at the interface and become coarser away from the interface. Details regarding the
e�ciency of the generation of the adaptive mesh and the quality of the mesh are given in
Reference [23].

3.2. Interpolation between meshes

The �eld quantities (T; C; u; v; p) are interpolated between the uniform mesh and the adaptive
mesh and between two consecutive adaptive meshes. It was found in Reference [23] that
quadratic triangular elements are needed for the interpolation of the solutal concentration in
order to conserve mass in the solute boundary layer ahead of the solidi�cation front, where the
concentration changes dramatically. For the velocity and pressure, however, linear triangular
elements are su�cient.

3.3. Discretization

The �nite element method with a Petrov–Galerkin formulation is used to discretize the
equations. The �-method, which corresponds to the second-order-in-time Crank–Nicolson
scheme, is used for the discretization in time. The convective terms are treated explicitly
so that the �nal sti�ness matrix is symmetric and positive-de�nite, and an iterative conjugate
gradient solver with preconditioning is used to obtain the solution. The Navier–Stokes equa-
tions are solved using a fractional-step method. Depending on the mesh size and boundary
conditions, the pressure is solved with a sparse direct solver or an iterative solver.

3.4. Solution procedure

1. At time tn, the temperature, concentration, interface position and its velocity, the liquid
velocity and pressure are all known.

2. A new interface position is obtained by moving each marker on the interface in the
normal direction with its calculated velocity.
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3. A mesh of triangular elements that conforms to the new interface and covers the liquid
region is generated.

4. The solute concentration, liquid velocity and pressure at the last time step are interpolated
from the old mesh to the new mesh. Liquid velocity is also interpolated from the old
adaptive mesh to the �xed uniform mesh.

5. Using the current interface velocity and liquid velocity, the new temperature and solute
concentration are solved.

6. The equilibrium freezing temperature at the interface is calculated from Equation (11),
and the interface temperature TI is then calculated from Equation (10).

7. A new interface velocity is calculated for each marker from Equation (8) and is com-
pared with the previous velocity. If the relative di�erence at each marker is less than
a prescribed tolerance, go to next step. Otherwise, a new interface velocity is obtained
at each marker using the previous velocity and the newly calculated velocity combined
using a relaxation parameter [42], and the program goes back to step 5.

8. The �uid velocity and the pressure are solved using the most recent temperature and
concentration for the gravity term. The program goes back to step 1 for the next time step.

4. RESULTS OF SOLIDIFICATION WITH CONVECTION

4.1. Growth of succinonitrile crystals with thermal convection

Numerical simulation of the e�ect of thermal convection on the growth of succinonitrile (SN)
crystals into an undercooled melt was done by T�onhardt and Amberg [6] who used a phase-
�eld method. In order to compare the numerical results with experimental data, T�onhardt and
Amberg used undercoolings from 1.92 to 0:12 K, which are within the range used in the
experiments. The corresponding dimensionless undercooling �= cp(Tm − T∞)=L(�= − St)
is between 0.08 and 0.005. With such small undercoolings, the thermal boundary layer at
the interface is large. Hence, the computational domain must be very large compared to the
size of the crystal in order to eliminate the boundary e�ects. The domain used in T�onhardt
and Amberg [6] was four orders of magnitude larger than the size of the initial seed and
two orders larger than the �nal grown crystal. To obtain good resolution at the interface in
such a big domain, the only reasonable choice is to use an adaptive grid strategy to keep the
computational expense within reasonable bounds.
In order to compare our numerical results to those reported in Reference [6], the same

properties of SN as listed in Table I of Reference [6] and the same domain size are used.
Because of symmetry, only half of the full square domain is used. The computational domain
with the boundary conditions is shown in Figure 2. Equations (21)–(24) are solved with
these boundary conditions and the interfacial conditions given by Equations (25)–(27). The
dimensionless material parameters are �p=�K = 1; �c=�S = 0; Pr=23:2, and 
0 = 0. The
dimensionless anisotropic interfacial energy is

	=	0(1− 15� cos 4�); �=0:015 (35)

where 	0 = �0Tm=�SLH�T . The Rayleigh number RT (= gH 3�T�T=�L�) and 	0 are dependent
of the length scale H and the undercooling �T . The length scale H is a multiple of the
capillary length, d0 = �0cpTm=L2 = 2:568× 10−6 mm.
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Table I. Simulation parameters that depend on the undercooling.

� �T (K) H (mm) 	0 RT

0.04 0.96 1:284× 10−3 5:00× 10−2 5:54× 10−8

0.02 0.48 2:568× 10−3 5:00× 10−2 2:22× 10−7

Figure 2. Computational domain with boundary conditions for crystal growth of succinonitrile with
thermal convection. The half-circle represents the initial seed.

Simulations were performed for two values of the dimensionless undercooling �, 0.04
and 0.02, for which the length scale H is 500d0 and 1000d0, respectively. The dimensional
undercooling �T =Tm − T∞, the length scale H , the interfacial energy coe�cient 	0 and the
Rayleigh number RT are listed in Table I. The �ow �eld for �=0:02 at dimensionless time
of 1:64× 106 is shown in Figure 3, which compares to Figure 2 of T�onhardt and Amberg [6].
Figure 3(a) shows the �ow vector in the full domain. The crystal is so small compared to
the full domain that it appears as a dot within a small box indicated by dotted lines in the
centre of the domain. The �ow caused by thermal buoyancy due to latent heat release on the
crystal surface forms two vortices above the crystal. The vortices are being freely driven up
by the thermal buoyancy; the centre of the vortices at this simulation time has just passed the
height 20× 103. The boundary e�ects on the vortices at this time point are still minimal due
to the large computational domain used. It can been seen that the strongest convection occurs
right above the crystal between the two vortices; the maximum �ow velocity is 0.056, about
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Figure 3. Flow velocity vector in crystal growth of succinonitrile with thermal convec-
tion: (a) full domain; and (b) local �ow vector around the crystal. The region plotted

is indicated in (a) with dotted lines.

200 times larger than the tip growth velocity (2:82× 10−4) of the downward growing crystal
arm. The �ow around the crystal within the small box indicated in Figure 3(a) is shown in
Figure 3(b). The temperature contours corresponding to Figure 3 are shown in Figure 4, which
is plotted in a similar way as Figure 3 in Reference [6]. While the values of these contours
are not given in Reference [6], the shapes of temperature contours look almost identical in
the two �gures.
The solid–liquid interfaces with and without convection are shown in Figures 5(a) and 5(b)

for �=0:04 and �=0:02 at times 1:28× 106 and 1:64× 106, respectively, which compare
and agree well to Figures 4(a) and 4(b) of Reference [6], respectively. The di�erence in the
size of the dendrites between the convective and nonconvective cases is larger for �=0:02
than �=0:04, indicating the e�ects of thermal convection on the dendrite growth is stronger
as the undercooling decreases. Also the horizontally growing dendrite arms for the smaller
undercooling are bent slightly downward because of the convection.
The tip velocities versus time for the downward, horizontal and upward growing dendrite

arms are plotted in Figure 6. While the growth of the downward growing dendrite arm
reaches quasi-steady state at approximately 1:0× 106 and 1:3× 106 for �=0:04 and �=0:02,
respectively, the tip velocity of the upward growing dendrite arm keeps decreasing all the time.
The time history of the growth of the horizontal dendrite arms is similar to that of the one
growing downward except at a lower growth rate: the tip velocity rapidly drops to a minimum
value in the initial transient stage and then slightly increases and reaches a steady state. The
tip velocity and radius of the downward growing dendrite arm at the end of the simulation
are listed in Table II together with T�onhardt and Amberg’s results.
The �xed mesh used for the temperature in the case of �=0:02 has close to 290 000

elements, about half of which are uniform square elements covering the dendritic growth
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Figure 4. Isotherms around the dendrite showing the e�ects of convection: (a) the closed isotherms are
stretched up by the upward convection; and (b) close-up around the dendrite.

region (about 1% of the whole domain in single dimension or 0.01% in area). The remaining
elements are unstructured triangles covering the remaining 99.99% of the domain. The adaptive
mesh for the momentum equations consists of all triangular elements, whose number varies
with the arc length of the interface: approximately 173 000 and 276 000 elements at the
beginning and end of the simulation, respectively. The CPU time for this case is approximately
114 hours on a HP/Compaq Alpha GS1280 machine (one processor), about a quarter of which
is spent to solve for the temperature, a quarter for the momentum equations and the rest for
the remeshing and interpolation.

4.2. Forced convection

Dendritic growth into an undercooled pure melt with an imposed uniform-incoming �ow has
been numerically simulated by several authors [9, 11, 12]. Here we consider the same case
that was simulated by Beckermann et al. [9] and Al-Rawahi and Tryggvason [11] in order
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Figure 5. Comparison of the solid–liquid interface with and without convection:
(a) �=0:04; and (b) �=0:02.
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Figure 6. Tip velocity versus time for the downward, horizontally and upward growing
dendrite arms: (a) �=0:04, (b) �=0:02. The horizontal dash-lines indicate the tip velocity
of the downward growing dendrite arm at times 1:28× 106 and 1:64× 106 for �=0:04 and

�=0:02, respectively, reported in Reference [6].

to compare our results with theirs. The computational domain and the boundary conditions
for the velocity components, pressure and temperature are illustrated in Figure 7. Symmetry
is imposed in the current simulation. The thermal properties of the solid and liquid are
the same. Equations (28)–(31) are solved with interfacial conditions, Equations (32)–(34),
and the boundary conditions given in Figure 7. The dimensionless material parameters are
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Table II. Tip velocity (Vtip) and radius (Rtip) and arm length (Larm) of the downward
growing dendrite arm at the end of simulation.

0.04 0.02

Undercooling (�) Vtip Rtip Larm Vtip Rtip Larm

T�onhardt and Amberg [6] 3:9× 10−4 14.75 563 2:87× 10−4 12 500
Current results 3:98× 10−4 13.3 548 2:82× 10−4 11.1 491

Figure 7. Computational domain and boundary conditions for dendritic growth with forced convection.
Due to symmetry the computational domain is only half of the simulated physical domain. The half-circle

represents the initial seed.

�p=�K =1, �c=�S =0, Pr=23:1, and 
0 = 0. The interfacial energy anisotropy function is
given by Equation (35) with �=0:05. The two controlling parameters are the Stefan number,
St, and the �ow Peclet Number, Pef , which take the values of −0:55 and 0.035, respectively.
Since the undercooling St= − 0:55 is rather high, the computational domain need not be

very large to exceed the thermal boundary-layer around the dendrite. The velocity boundary-
layer, however, extends to approximately �ve times the thermal boundary layer. The current
simulation uses a nondimensional domain of 5000× 10 000 based on the capillary length,
which is about �ve times larger than the domain used by Al-Rawahi and Tryggvason [11]
and three time larger than the largest domain used by Beckermann et al. [9]. The �nite
element mesh is non-uniform; the size of the �nest elements is about 2.5 nondimensional
units. A typical mesh for the momentum equations consists of 57 000 nodes and 114 000
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Figure 8. The temperature �eld and the interface at nondimensional time 2:5× 104. The interface is
shown at equal time intervals of 2:5× 103.

triangular elements. The mesh for the energy equation contains close to 110 000 nodes and
140 000 mixed quadrilateral and triangular elements.
Figure 8 shows the dendrite and the temperature �eld at the nondimensional time of

2:5× 104. The interface evolution is shown at equal time intervals of 2:5× 103. The outer
contour represents the thermal boundary layer de�ned as 99.99% of the undercooling, well
contained within the computational domain. However, the velocity gradients extend to a much
larger region as demonstrated in Figures 9(a) and 9(b), which show the contours of the veloc-
ity components. The time histories of the tip velocities of the upstream, the perpendicular and
the downstream dendrite arms are plotted in Figure 10, which shows converged steady-state
velocities of the tips. The tip velocity of the downstream arm decreases very slowly at the
end of the simulation and has almost reach a steady state. The tip velocities and tip radii of
the three dendrite arms at or near the steady state are listed in Table III together with the
results reported in References [9, 11].

4.3. Convection induced by contraction

Most materials undergo contraction (or expansion) upon solidi�cation because the densities
of the liquid and solid phases are di�erent. Obviously, contraction (expansion) upon so-
lidi�cation induces the melt to �ow toward (away from) the solid–liquid interface, and the
convection changes the temperature and solute concentration distribution ahead of the interface
and thereby the evolution of the interface. Depending on the magnitude of the solidi�cation
contraction, contraction-induced convection can be stronger than buoyancy-induced convection
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Figure 9. Contours of �ow velocity components showing the region of velocity gradients:
(a) u component; and (b) v component.
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Figure 10. Time history of tip velocities of the upstream, sidewise and downstream dendrite arms.

and have signi�cant e�ects on dendritic growth. With the exception of the work by Conti [22],
however, contraction-induced convection has not been considered in previous simulations of
dendritic growth.
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Table III. Tip velocity (Vtip) and radius (Rtip) in the case of forced convection.
Pef = 0:035, St= − 0:55, Pr=23:1, �=0:05 (NA – not available).

Dendrite arm tip Upstream Sidewise Downstream

Velocity, radius Vtip Rtip Vtip Rtip Vtip Rtip

Beckermann et al. [9] 0.0244 7.46 0.0174 6.9 0.0120 7.0
Al-Rawahi and Tryggvason [11] 0.0244 6.3 0.0170 7.4 NA 7.5
Current results 0.0225 6.1 0.0173 7.1 0.0145 7.2

By mass conservation, the �ow velocity at the interface is related to the solidi�cation
contraction (�S), the interface velocity (VI) and the interface normal vector (n) through the
following relation:

u= − �SVIn (36)

which is valid for both contraction and expansion (solidi�cation and remelting). Since in our
model the interface position, velocity and curvature are explicitly calculated and the mesh
for the momentum equations conforms to the interface, it is straightforward to impose the
interfacial velocity conditions at the exact position.
As a �rst example, equiaxial dendritic growth of a model pure substance into its undercooled

melt is considered with convection induced by contraction alone. The nondimensional material
properties are �p=�K =1, �S =0:1, Pr=1, �c=1 − �p=(�S − 1) and 	0 =
0 = 0:001. The
anisotropy function for the interfacial energy is similar to that used by Juric and Tryggvason
[48],

f(�)=1 + A	

(
8
3
sin4

(
1
2
m	(�− �	)

)
− 1
)

(37)

with A	=0:4, m	=6 and �	=30◦, where m	 speci�es the mode of the symmetry of the
dendrite. The dimensionless undercooling is St= − 0:8. A seed is initially placed in the
centre of the computational domain, which is a square of 4× 4 units. The initial seed is a
perturbed circle speci�ed by x= xc + R cos(�); y=yc + R sin(�), where (xc; yc) is the centre
of the domain and R=R0 + �s cos(ms(� − �s)) with R0 = 0:1, �s=0:02, ms=m	, and �s= �	.
The perturbation in the seed is aligned with the symmetry mode of the interfacial energy
anisotropy. The boundary conditions are T = St, n · ∇u=0, n · ∇v=0 and p=0. All the
boundaries of the domain are open so the melt is free to enter the domain to �ll the mass
de�cit caused by solidi�cation contraction.
The second example is similar to the �rst one except the material is an alloy. Besides the

parameters given above, new parameters related to the species are needed; they are initial uni-
form concentration C0 = 2:2, the segregation ratio k=0:4, the slope of the liquidus m=0:035
and the Lewis number Le=10. The boundary condition for the solute concentration is C=C0.
Figures 11(a)–11(d) show the interface evolution for the above two cases together with

their counterparts without convection. The simulation times for all the four cases are the
same and the interface is shown at equal intervals of 0.01. The convection caused by contrac-
tion enhances the growth rate and destabilizes the interface, and the growth of the dendrite
is enhanced in all directions. This is expected since convection by contraction has similar
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Figure 11. Comparison of interface morphology in equiaxial solidi�cation of a pure substance and an
alloy with and without contraction-induced convection: (a) pure substance without convection; (b) alloy
without convection; (c) pure substance with convection; and (d) alloy with convection. The simulation

times for the four cases are the same, and the interface is shown at equal intervals of 0.01.

e�ects on all dendrite arms (including secondary dendrite arms) as a forced �ow has on an
upstream-growing dendrite arm. The mutual enhancement between local solidi�cation rate and
convection destabilizes the interface as any protuberance causes stronger convection locally.
It can also be seen from Figure 11 that the e�ects of convection on dendritic growth are more
signi�cant for the pure substance than for the alloy. That is because solidi�cation is faster and
convection is stronger in the pure substance case. The buildup of the solute concentration near
the interface due to solute segregation upon solidi�cation slows down the dendrite growth.
The velocities together with the dendrite outlines for the pure substance and the alloy are

shown in Figure 12. As expected the �ow velocity is maximal at the dendrite tips and some
narrow openings of inter-dendritic regions and minimal in the grooves of the dendrite.
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(a) (b)

Figure 12. Flow velocity vectors in equiaxial dendritic growth with contraction-induced convection: (a)
pure substance; and (b) alloy. The dendrite outline is shown as the inner boundary of the �ow �eld.

4.4. Directional solidi�cation with mixed convection

Thermosolutal convection with and without contraction is considered for the directional solid-
i�cation of Pb–0:2 wt% Sb alloy. The physical properties of the alloy are listed in Table IV.
The problem setup is illustrated in Figure 1(b). The computational domain is a square of
0:8× 0:8mm, corresponding to a nondimensional domain of (3:32× 105)2 based on the capil-
lary length d0 = �0cPLTm0=�L0L2. Initially, the domain is all melt with a uniform concentration
of C0 = 0:2wt% Sb and a thermal gradient G=1:008K=mm in the vertical direction. Solidi�-
cation is initiated and subsequently driven by extracting heat at the cooling rate CR=0:039K=s
from the bottom (the cooling end) while maintaining the thermal gradient on the top. Based on
�T =GH (H is set to be 1mm) and �C=C0(1−k)=k, the interfacial energy and kinetic mo-
bility coe�cients are 	0 = 4:63× 10−5 and �0 = 0:618. Equation (35) is used for the anisotropic
interfacial energy with �=0:0267 and the kinetic mobility is constant (no anisotropy).
As solidi�cation proceeds the plane-front breaks down and dendrites evolve. The solute

concentration builds up at the roots of the dendrites; this tends to destabilize the system with
respect to convection since the solute (Sb) is less dense than the solvent (Pb). On the contrary
the temperature distribution stabilizes the system since the melt is cooler at the bottom and
the thermal expansion is positive. The e�ect of the thermal gradient on the instability is
much smaller than that of the concentration gradient; at the beginning of the simulation the
thermal Rayleigh number is RT =0:174 based on the height of the melt region and the solute
Rayleigh number is RC =1643 based on thickness of the solutal boundary layer where the
concentration gradient exists. This thickness is de�ned as the distance from the interface to
the position where the concentration dropped 99% in the boundary layer. According to linear
stability theories [49], the critical Rayleigh number for the onset of convective instability is
1100 for one-rigid one-free boundary conditions which is a good approximation to the current
problem set-up when there is no contraction.
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Table IV. Physical properties of alloy Pb–0:2 wt% Sb.

Property Symbol and unit Value

Bulk concentration of Sb C0, wt% 0.2
Liquid density at base state �L0, kg=mm3 1:042× 10−5

Solute di�usivity DL, mm2=s 2:0× 10−3

Solute segregation ratio k 0.4
Slope of liquidus line m, K/wt% −5:0
Melting temperature of pure solvent Tm0, K 600.0
Latent heat of fusion L, J/kg 29775
Heat conductivity in solid �S, J=smm K 0.023
Heat conductivity in liquid �L, J=s mm K 0.023
Speci�c heat of solid cPS, J=mm3 K 1:52× 10−3

Speci�c heat of liquid cPL, J=mm3 K 1:52× 10−3

Thermal expansion coe�cient �T , K−1 1:22× 10−4

Solutal expansion coe�cient �C , 1/wt% 5:88× 10−3

Solidi�cation contraction �S 0.0532
Interfacial energy �0, J=mm2 2:54× 10−8

Kinetic mobility �0, mm=s K 6.67
Lewis number Le 7565
Prandtl number Pr 0.0124
Schmidt number Sc 93.8

Similar to the procedure used in Reference [23], to save computational time the one-
dimensional model is run �rst, and the temperature and concentrations from the
one-dimensional calculations are then used as initial conditions to start the full two-dimensional
calculations. For a given combination of thermal gradient G and cooling rate CR, there is a
corresponding one-dimensional steady-state solution of the temperature and concentration. The
thermal gradient and the cooling rate are chosen so that at the �nal one-dimensional steady
state constitutional undercooling is established at the interface, and the perturbation of the pla-
nar interface grows in the following two-dimensional calculations. In this case a perturbation
cosine wave with wavelength 0:1 mm and amplitude 0:0036 mm is applied to the interface
position in the vertical direction. Symmetry boundary conditions are used for the velocity and
pressure on the vertical sides of the domain. On the top the velocity components are free
(@u=@n= @v=@n=0), and the pressure is set to a �xed value. The anisotropy function for the
interface energy is the same as Equation (35), and the kinetic mobility is constant.
We present two simulations, one with contraction and one without. The �ows and the

dendrites at two simulation times, 2.4 and 3:4s, are shown in Figures 13(a)–13(d). As expected
the case without contraction exhibits thermosolutal convection as shown in Figures 13(a) and
13(c), where several convection cells can be seen ahead of the dendrite tips. Farther away
from the dendrite tips convection is small because the concentration is almost uniform there.
Interdendritic convection is seen at the earlier simulation time, Figure 13(a), when the dendrite
spacings are large; near the roots of the dendrites the convection is minimal because the region
is con�ned.
Figures 13(b) and 13(d) show the results of the case with contraction. The downward �ow

because of contraction is much stronger than the circulatory �ow by thermosolutal buoy-
ancy, and the latter is completely absorbed by the former. As a result, the �ow is almost
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Figure 13. Dendrites and velocity vectors in directional solidi�cation of Pb-0.2wt% Sb alloy with ther-
mosolutal convection: (a) at t=2:4s without contraction; (b) at t=2:4s with contraction; (c) at t=3:4s

without contraction; and (d) at t=3:4 s with contraction.

unidirectional toward the dendrite zone and approximately one order of magnitude larger than
the maximum velocity in the pure thermosolutal case. Note that the alloy used in this simula-
tion has an initial (bulk) solute concentration of only 0:2 wt% Sb. If the initial concentration
increases by one or two orders, solutal convection would be comparable or even stronger than
contraction-induced convection. Richer alloys, however, are much more di�cult to simulate
[23, 24].
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Figure 14. Solute concentration �eld (wt% Sb) at the end of simulation: (a) without contraction; and
(b) with contraction. The dimension unit is mm.

The solutal concentration �eld is shown in Figures 14(a) and 14(b), where the solutal
boundary layer can be seen ahead of the dendrite tips. Microsegregation can also be observed
in the dendrites because the interface concentration at the root of the dendrites is higher than
at the tip of the dendrites.
Figures 13 and 14 show a slight di�erence in solidi�cation rate and dendritic structure. The

�rst di�erence is that the dendritic growth in the case without contraction is slightly faster
than that with contraction, because the almost unidirectional �ow brings the hotter melt to
the interface. This e�ect is opposite to that in the case presented in Section 5.3, where the
contraction-induced convection carries the undercooled melt to the interface and enhances the
solidi�cation. The second di�erence is that the dendritic structure in the case with contraction
is somewhat �ner than without contraction. With contraction the interdendritic convection is
stronger; this promotes the growth of those dendrites that tend to fall behind and the growth
of side branches of the larger dendrites.

5. CONCLUSIONS

A sharp-interface �nite element numerical model is presented for the simulation of dendritic
solidi�cation with free and forced convection. The model is an extension of the one developed
in References [23, 24, 42] by including convection terms in the energy and solutal concentra-
tion equations and coupling the solution of the Navier–Stokes equations for incompressible
�ow. One of the advantages of this model is that it works directly with primitive parame-
ters and can accommodate all forms of convection. To deal with the di�culties related to
the solute segregation and the imposition of velocity boundary conditions at the interface,
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a strategy is used that solves the concentration and Navier–Stokes equations in the liquid
region only while solving the energy equation in the whole domain where the interface is
explicitly tracked. Two meshes are used: a �xed one for the temperature and an adaptive
one for the concentration and the �ow �elds. The adaptive mesh is locally re�ned in the
vicinity of the interface to resolve the small length scales. The �xed mesh can also be non-
uniform, with �ner elements covering the region within which solidi�cation takes place and
coarser elements elsewhere. The �exibility associated with the meshes provides the advantage
that simulations can be performed in a relatively large domain while keeping the number of
elements relatively small. The major advantage of this model is that the imposition of the
solute and velocity boundary conditions at the evolving interface is straightforward and easily
handled; this is usually the biggest challenge for a pure Cartesian-grid method.
There are two drawbacks with this model, which have already been discussed in References

[23, 24, 42]. The �rst one is related to the explicit tracking of the interface, which becomes
complicated in three dimensions. This is a common drawback with any models that explicitly
track the interface. It has been demonstrated, however, that in two dimensions the current
interface-tracking method can resolve more complex interface morphologies than other explicit
front-tracking methods [46]. The second drawback is the need to regenerate the adaptive mesh
and to interpolate the �eld quantities from an old mesh to the new one. This is inevitable
when adaptive meshes are used but is minimized by using a very e�cient mesh generator
[23].
The model without convection has been validated in References [23, 42]. The Navier–Stokes

solver and the solution of convection–di�usion equations were tested in this article through
several examples including uniform �ow past a circular cylinder, �ow around an oscillating
circular cylinder and a Rayleigh–Benard thermal instability problem (See Appendix). Quantita-
tive agreement is found between the results of this model and those of experiments, analysis
and other calculations. Simulation results on crystal growth of succinonitrile with thermal
convection are in excellent agreement with the results of T�onhardt and Amberg [6].
For the case of equiaxial dendritic growth into an undercooled pure melt with forced con-

vection, the predicted dendritic tip velocities and radii compare very well to those reported by
Beckermann et al. [9] and Al-Rawahi and Tryggvason [11]. Results on contraction-induced
convection and alloy solidi�cation with thermosolutal convection are new. It is found that
convection due to contraction enhances the solidi�cation rate and destabilizes the interface for
both the undercooled pure substance and alloy considered. Simulations on directional solidi�-
cation of a dilute Pb–Sb alloy show that thermosolutal convection cells develop ahead of the
interface. For the dilute alloy, however, when contraction-induced convection was added, the
thermosolutal convection cells disappear. The almost unidirectional �ow caused by contrac-
tion in directional solidi�cation slows down the solidi�cation rate. Interdendritic convection
tends to make the dendritic structure �ner and more compact by promoting the growth of side
branches and those dendrites that tend to be left behind.

APPENDIX A: MODEL VALIDATION

A series of model validation calculations is presented in our previous papers [23, 24, 42] for
dendritic solidi�cation of pure substances and alloys in the absence of convection. In Reference
[42], the model shows second-order convergence in tracking the interface position and �rst
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order in approximating the interface velocity for a two-dimensional solidi�cation problem that
permits exact solutions. For dendritic growth into an undercooled pure melt, the model was
tested against solvability theory in predicting the tip growth velocity. For the case of binary
alloys [23], the model again showed good accuracy in the temperature, solute concentration
and the interface position and velocity for the test problems. The model predicted the onset of
stability and unstable wavelengths in agreement with the linear stability theory of Mullins and
Sekerka [50]. Mesh re�nement studies were performed in References [42, 51]. In this section,
we present validation of the model with three classical cases of convection.

A.1. Flow past a stationary circular cylinder

Flow past a circular cylinder has been a good model problem for �ows past other shapes
of bodies (including dendrites) and for validation of the Navier–Stokes solver. The physical
problem becomes experimentally unstable with respect to unsymmetrical disturbances around
Reynolds number Re=40 based on the diameter of the cylinder and the free-stream velocity,
U∞. If symmetry is imposed, however, stability can persist for a much higher Re. Numer-
ical studies for the steady symmetric problem of �ow past a circular cylinder have been
performed by, among others, Fornberg [52] who systematically studied the problem using a
stream function-vorticity formulation. The positions of the end of the wake bubble for di�erent
Reynolds numbers are reported in Reference [52] and are used to test the current model.
Similar to Fornberg [52], we consider the upper-half plane since symmetry is assumed. The

radius of the cylinder is r = 1, and the computational domain is a rectangle of 120× 50
minus the half-cylinder at the origin as shown in Figure A1. The domain is chosen to be rather
large to eliminate the in�uence of outer boundary conditions. The boundary conditions used
in the calculations are shown in Figure A1. A mesh of about 94 000 nodes and 187 000 linear
triangular elements is used. The mesh is body-�tted with re�ned elements around the cylinder
and in the wake region behind the cylinder. On the half-cylinder surface 60 elements are used;
the ratio of the coarsest element size (on the outer boundaries) to the �nest element size (on
the cylinder surface) is about 12. For this problem, the Reynolds number, Re=2U∞r=�, is
the only dimensionless parameter that determines the solutions. Calculations are performed for
four di�erent Reynolds numbers: Re=10, 20, 40, and 100. The streamlines for these Reynolds

Figure A1. Computational domain for �ow past a circular cylinder and the boundary con-
ditions used in the calculations with the symmetry condition imposed. The half-cylinder

resides at (0; 0) with a radius of one unit.
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Figure A2. Flow past a circular cylinder: streamlines for (a) Re=10; (b) Re=20;
(c) Re=40; and (d) Re=100.

Table AI. Position of end of wake bubble for di�erent Reynolds numbers.

Re 10 20 40 100

Fornberg [52] 1.40 2.82 5.48 13.6
Current model 1.40 2.84 5.50 13.4

numbers are shown in Figures A2(a)–A2(d). The positions of the end of the wake bubble are
listed in Table AI together with the results of Fornberg [52]; the di�erences are within 1.5%.

A.2. Flow induced by an oscillating circular cylinder

Flow induced by harmonic in-line oscillation of a circular cylinder in water at rest has been
experimentally and numerically studied by D�utsch et al. [53]. Their experimental data and
numerical results are in good agreement and are available for validation. Numerically, D�utsch
et al. solved the problem using a second-order �nite volume discretization in a non-inertial
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Figure A3. Pressure and vorticity at two phase angles, 0◦ and 96◦, for Re=100 and KC=5.

system moving with the oscillating cylinder. An extra force term due to the system acceleration
was added to the momentum equations and the problem was solved in a �xed grid. In order
to test the current model for an adaptive mesh, the inertial system is used in our calculations,
and the mesh changes every time step as the cylinder moves. The same parameters as those
used by D�utsch et al. [53] are used. The cylinder, with a diameter of 1 cm, is placed at the
centre of the computational domain, a square of 120× 120 cm �lled with water at rest. With
such a large domain (compared to the dimension of the cylinder), the interactions between
the outer boundaries and the cylinder are negligible. Flow induced by the cylinder oscillation
is con�ned to the near-cylinder region.
The boundary conditions for velocity are: u=0 at the outer walls and u=Vcy(t) on the

cylinder surface, where Vcy(t) is the velocity of the cylinder. For pressure the following
boundary conditions are used:

@p
@n
=0 on the outer walls; and

@p
@n
=−

(
Du
Dt

)
· n= −

(
dVcy
dt

)
· n on the cylinder surface

A typical mesh consists of 60 000 nodes and 120 000 triangular elements with 200 elements
on the cylinder surface. The mesh is graded, the elements are the �nest near the cylinder and
become coarser away from the cylinder. The ratio of the coarsest to the �nest element sizes
is around 80. To reduce the computational time for the mesh generation, the whole domain is
divided into two regions: an inner region that encloses the cylinder and an outer region. The
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Figure A4. Comparison of velocity components between the numerical results by the
current model and the experimental data by D�utsch et al. [53] at four cross-sections
with constant x-value: (a) u at phase angle 180◦; (b) v at 180◦; (c) u at 330◦;

and (d) v at 330◦. Re=100 and KC=5.

inner region moves with the cylinder, and the mesh on the inner region is �xed. The mesh
that covers the outer region is adapted every time step. The whole mesh consists of the two
meshes that merge.
The oscillation of the cylinder is given by x(t)= − A sin(2�ft), where x(t) is the hori-

zontal position of the cylinder, A and f denote the amplitude and frequency of the oscilla-
tion, respectively. For this problem, there are two independent dimensionless parameters, the
Reynolds number Re=UmaxD=� and the Keulegan–Carpenter number KC=Umax=fD, where
Umax =2�fA is the maximum velocity of the cylinder and D is the diameter of the cylinder.
Results for Re=100 and KC=5 are shown in Figures A3–A5. Figure A3 shows the pressure
and vorticity in the vicinity of the cylinder for two phase-angles, 0◦ and 96◦, of the oscil-
lation; the patterns of the contours are in excellent agreement with those shown in Figure 6
of Reference [53]. Quantitative comparison with the experimental data by D�utsch et al. is
shown in Figure A4 for the velocity components at four cross-sections for two phase angles.
While the agreement is only reasonably good, the di�erences between the numerical results
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Figure A5. In-line force history for the �rst ten cycles, Re=100 and KC=5.

Figure A6. Computational domain (8H ×H) with boundary conditions used to simulate the thermal
instability of a horizontal layer of �uid heated from below. The boundary condition for the pressure is

@p=@n=0 everywhere except one (arbitrary) point on the boundary.

and the experimental data shown in Figure A4 are almost identical to those shown in Figure 8
of Reference [53], indicating the two numerical results agree very well. Figure A5 shows the
in-line force history, Fx(t), for the �rst ten cycles of oscillation. By least-squares �tting to
the following empirical formula [53],

Fx(t)= − cd(�Dẋ|ẋ|=2)− ci(��D2 �x=4)

where ẋ and �x denote the �rst and second derivatives with respect to time, the drag and
added-mass coe�cients cd and ci are found to be 2.06 and 1.43, respectively, compared to
the results of D�utsch et al. of 2.09 and 1.45, respectively.
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A.3. The B�enard thermal instability problem

The thermal instability of a horizontal layer of �uid heated from below is considered to test
whether the current model captures the onset of the instability and convection beyond the
onset. The �uid layer is initially at rest with a constant adverse temperature gradient, GT ,
imposed in the gravitational direction. The only dimensionless parameter that determines the
onset of stability of the �uid layer is the Rayleigh number, RT = gH 4�TGT =��L, with H being
the height of the �uid layer. According to the hydrodynamic stability theory, the critical value
of RT , at which instability sets in, is 1708 for rigid top and bottom boundaries. The convection
cells at the marginal state have a dimensionless wave length of 2.016 based on the height of
the layer. The theoretical results are based on the assumption that the horizontal dimension
of the layer is in�nite. To simulate this problem with the current model, a domain of 8× 1 is
used as shown in Figure A6 with the boundary conditions indicated. Simulations show that
no convection develops for Rayleigh number(RT ) up to 1700. The minimum RT considered at
which steady convection appeared is 1718, very close to the critical value 1708 predicted by
theory. (Rayleigh numbers between 1708 and 1718 have also been tried, and convection does
appear after a su�ciently long time of simulation. The convection, however, is very weak and
strongly in�uenced by numerical noise). At RT =1718, there appear eight convection cells in
the 8× 1 channel, indicating the calculated wavelength is 2 (one wavelength contains two
cells).

Table AII. Variation of the Nusselt number with the Rayleigh number.

RT 1700 2000 3000 4000 8000 16 000 30 000
Nu 1.000 1.180 1.645 1.915 2.452 2.954 3.474

Figure A7. The Nusselt number against the Rayleigh number. The plot is a direct copy from Figure 13
of Reference [49]. Current numerical results, denoted by the open squares, are added. Other symbols

are experimental results for di�erent liquids.
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Figure A8. Temperature and stream functions for four di�erent Rayleigh numbers.

For RT beyond the critical number, simulations were performed for RT =2000, 3000, 4000,
8000, 16 000, and 30 000. For each of these Rayleigh numbers, the Nusselt number, de�ned as
Nu= q=�GT with q being the heat �ux on the boundary surface, is calculated. The calculated
Nusselt number versus the Rayleigh number is listed in Table AII and plotted in Figure A7
together with the experimental data reported in Figure 13 of Reference [49]. The comparison
shows good agreement between the numerical and experimental results. Figure A8 shows
the temperature and stream function isolines for four di�erent Rayleigh numbers. It is seen
that as RT increases, the distortion of temperature isolines from the base state (horizontal
lines) increases and the number of the convection cells increases, indicating that the active
convection wavelength becomes shorter and the convection becomes stronger. It is also found
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that the Prandtl number has a very small e�ect on the Nusselt number; this is also indicated
by the experimental results reported in Reference [49].
Based on these results, the present model was determined to be appropriate for simulating

solidi�cation/convection problems.
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